Joachim seemann dallas
Ly Lab. MacConmara Lab. Macromolecular Biophysics Resource. Madabhushi Lab. Maddipati Lab. Madhuranthakam Lab. Mahendroo Research Lab. Marciano Lab.
Martinez Lab. McBrayer Lab. McFadden Lab. McKnight Lab. Medicinal Chemistry Lab. Mendelson Lab. Michaely Lab. Microbiome Lab. Minassian Lab. Mishra Lab. Monson Lab. Montillo Lab. Moreland Lab. Morrison Lab.
Mukhopadhyay Lab. Munshi Lab. Najafov Lab. Nam Yunsun Lab. Neuromuscular Diseases Laboratory. Neurorepair Lab. Next Generation Sequencing Core. Nicastro Lab. Niederkorn Lab. Nijhawan Lab. Nitschke Lab. Nuclear Magnetic Resonance Lab. Nwariaku Lab. O'Donnell Lab. Otwinowski Lab. Park Lab. Pascual Rare Brain Disorders Lab.
Pawlowski Lab. Pfeiffer Brad Lab. Pfeiffer Julie Lab. Phillips Lab. Pouratian Lab. Prange-Kiel Lab. Preclinical Pharmacology Core Lab. Psychoneuroendocrine Lab. Quantitative Morphology Facility. Radhakrishnan Lab. Rajaram Lab. Rare Brain Disorders Lab. Reese Michael Lab. Reese Tiffany Lab. Reinecker Lab. Repa Lab. Reynolds Kimberly Lab. Rice Lab. Rizo-Rey Lab. Robertson Lab.
Rosenbaum Lab. Rosenberg Lab. Ross Elliott Lab. Ross Theodora Lab. Rothermel Lab. Sabari Lab. Saelices Lab. Sandstrom Lab. Satterthwaite Lab. Scherer Lab.
Schoggins Lab. Shakkottai Lab. Siegwart Lab. Smith Dean Lab. Southern Lab. Sperandio Lab. Sreelatha Lab. Stroud Lab. Stroynowski Lab. Structural Biology Lab. Sun Xiankai Lab. Tagliabracci Lab. Takahashi Lab. Texas Computational Memory Lab.
Thomas Philip Lab. Toprak Lab. Ufret-Vincenty Lab. Unger Lab. Vinogradov Lab. Vongpatanasin Lab. Wai Lab. Wakeland Lab. Wang Boyuan Lab. Wang Fei Lab. Wang Jijia Lab. Wang Jerry Lab. Wang Jing Lab. Wang Ken Kang-Hsin Lab. Wang Richard Lab. Wang Tao Lab. Wang Weiwei Lab. Wang Yingfei Lab. Wang Zhao Lab. Wang Zhigao Lab. Weaver Lab. Data Science Shared Resource.
Dauer Lab. Davis Lab. De Brabander Lab. De Gracia Lux Lab. DeBerardinis Lab. DeBose-Boyd Lab. Deisenhofer Lab. Dellinger Lab. DeMartino Lab. DNA Genotyping Core. Doubrovinski Lab. Electron Microscopy Core Facility. Elmquist Lab. Engelking Lab.
Erzberger Lab. Farrar Lab. Fontoura Lab. Fragile X Syndrome Research Center. Frederick Lab. Friedman Jonathan Lab. Fu Yang-Xin Lab. Fujikawa Lab. Functional MRI Lab. Galindo Lab. Gao Jinming Lab. Gautron Lab. Ge Woo-Ping Lab. Goldsmith Lab. Green Lab. Greenberg Lab. Grinnell Lab. Grishin Lab. Gruber Lab. Gupta Rana Lab. Gupta Olga Lab. Hendrixson Lab. Henkemeyer Lab. Herz Joachim Lab. High-Throughput Screening Lab. Hilgemann Lab. Hill Joseph Lab. Histo Pathology Lab. Hobbs-Cohen Lab. Hon Lab.
Hooper Lab. Hoshida Lab. Hoxhaj Lab. Horton Jay Lab. Hsieh Jer-Tsong Lab. Hu Ming-Chang Lab. Huang Lily Lab. Hulleman Lab. Human Gene Discovery Laboratory. Human Genetics Clinical Laboratory. Jain Mamta Lab. Jain Raksha Lab. Jewell Lab. Jia Xun Lab. Jiang Huaqi Lab. Jiang Jin Lab. Jiang Steve Lab. Jiang Youxing Lab. Joachimiak Lab. Johnson Jane Lab. Kim Daehwan Lab. Kim James Lab. Kim Taekyung Lab. Kitamura Lab. Koh Lab. Konopka Lab. Kourrich Lab. Lai Helen Lab. LCIF Lab. Levi Lab. Li Bo Lab.
Li Guo-Min Lab. Li Wen-Hong Lab. Li Xiaochun Lab. Ligorio Lab. Lin Rueyling Lab. Lin Weichun Lab. Liu Chen Lab. Liu Xin Lab. Liu Zhi-Ping Lab.
Liszczak Lab. Lu Christopher Lab. Lu Lenette Lab. Lu Weiguo Lab. Luo Weibo Lab. Cell proliferation critically depends on the duplication organelles in interphase and the segregation between the two daughter cells during mitosis. Accurate partitioning of chromosomes and intracellular organelles is crucial to sustain cellular functions over generations. Defects in mitosis can lead to genomic instability and loss of vital organelles, which is commonly associated with the development of cancer.
While much progress has been made towards understanding the segregation of chromosomes, the mechanisms that govern the partitioning of vital organelles, in particular of the Golgi, remain largely unknown.
The mammalian Golgi is essential for secretion and post-mitotic cell survival depends on the partitioning of a functional Golgi into progeny. Our aim i s to define the underlying mechanisms that ensure the faithful partitioning of the single mammalian Golgi during mitosis. At the onset of mitosis, the highly organized Golgi structure vesiculates and reforms after equal partitioning in the two daughter cells. We previously showed that the spindle actively partitions the mammalian Golgi.
This process is initiated by the Golgi membrane protein GM, which locally activates the spindle assembly factor TPX2 to initiate microtubule polymerization. Forming microtubules are further captured and bundled by GM, thereby linking Golgi membranes to the spindle to ensure the Golgi segregation into the daughter cells.
In this proposal we plan to determine the biochemical and mechanistic basis for this process.
0コメント